162t=-16t^2+162(0)

Simple and best practice solution for 162t=-16t^2+162(0) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 162t=-16t^2+162(0) equation:



162t=-16t^2+162(0)
We move all terms to the left:
162t-(-16t^2+162(0))=0
We get rid of parentheses
16t^2+162t-1620=0
a = 16; b = 162; c = -1620;
Δ = b2-4ac
Δ = 1622-4·16·(-1620)
Δ = 129924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{129924}=\sqrt{324*401}=\sqrt{324}*\sqrt{401}=18\sqrt{401}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(162)-18\sqrt{401}}{2*16}=\frac{-162-18\sqrt{401}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(162)+18\sqrt{401}}{2*16}=\frac{-162+18\sqrt{401}}{32} $

See similar equations:

| 21=(-3.5)x | | 4c−7=9 | | 7m-8=5m+10 | | 5/8=n-÷9 | | -4x+4+2=8-3x | | w+31/8=15/6 | | 5÷8=n÷n-9 | | -3.2x–6=2.4 | | 2(4x-7)=4x+21 | | 18−(7x−4)=−1−(23+x) | | x-100-5x+20=600 | | 12x²-7x-12=0 | | 0.5^x=0.75 | | x-20-5x+20=600 | | -4-4n=n-4 | | x+5x+4=6x-x–2 | | x-5x+20=600 | | -12-12x=20-13x | | x-5x=600-20 | | x-5x=600+20 | | x-5x=600 | | (6x+1)=(5x+19) | | y=-9/5 | | 2−(3−10y)=9 | | −21−2k=5−4(−4+2k) | | 4/7+2/7−x=2/7 | | 7.3y=-46.62 | | {n}{-5}=7 | | 7.3y=46.62 | | 16x^2+48x+28=0 | | (4x+0)=(2x+0) | | (4x)=(2x) |

Equations solver categories